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Depictions with traditional media such as painting and drawing represent
scene content in a stylized manner. It is unclear, however, how well stylized
images depict scene properties like shape, material, and lighting. In this
article, we describe the first study of material perception in stylized images
(specifically painting and cartoon) and use nonphotorealistic rendering al-
gorithms to evaluate how such stylization alters the perception of gloss. Our
study reveals a compression of the range of representable gloss in stylized
images so that shiny materials appear more diffuse in painterly rendering,
while diffuse materials appear shinier in cartoon images. From our mea-
surements we estimate the function that maps realistic gloss parameters to
their perception in a stylized rendering. This mapping allows users of NPR
algorithms to predict the perception of gloss in their images. The inverse of
this function exaggerates gloss properties to make the contrast between ma-
terials in a stylized image more faithful. We have conducted our experiment
both in a lab and on a crowdsourcing Web site. While crowdsourcing allows
us to quickly design our pilot study, a lab experiment provides more control
on how subjects perform the task. We provide a detailed comparison of the
results obtained with the two approaches and discuss their advantages and
drawbacks for studies like ours.
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1. INTRODUCTION

One of the main goals of painting and drawing is to suggest scene
content in a simplified or stylized manner. Such stylized depictions
are often surprisingly effective despite their departure from realism.
Our goal is to better understand how well stylized images depict
scene properties. As a first step we focus on the evaluation of gloss
perception in painting and cartoon images.

Existing work focus on the evaluation of shape depiction in styl-
ized images [Winnemöller et al. 2007; Cole et al. 2009] and no study
exists on the evaluation of material depiction, despite the variety of
materials that one may wish to depict in an illustration. What makes
an object look shiny in a painting? Can we depict a diffuse object in
a cartoon? Artists often rely on their experience of their media to an-
swer such questions and depict materials in different styles [Cooke
1967; Johnson 1992; Ott and Kuseno 2005]. However, this artis-
tic knowledge is often implicit and while high-level rules exist to
depict light and shade in a given style, no guidelines exist to vary
low-level material properties such as the amount of gloss. In this
article we explore the use of NonPhotorealistic Rendering (NPR)
as a tool to systematically study the effects of style parameters on
material perception. Our aim is to build an explicit set of guidelines
for depicting material in stylized images and we first investigate
how painterly and cartoon styles influence the perception of gloss.

We build on Pellacini et al.’s [2000] psychophysical model of
gloss perception which identifies contrast and sharpness of high-
lights as the two dimensions that people are most sensitive to when
viewing glossy materials. As stylization directly alters both of these
dimensions, we expect stylization to also alter gloss. In painterly
rendering, large brush strokes eliminate or spread out the small spec-
ular highlights that contribute to the appearance of shininess. But
opaque strokes also increase the number of sharp edges in diffuse re-
gions of the image (Figure 1(b)) and may exaggerate the perception
of gloss. Semitransparent strokes primarily reduce local contrast,
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(a) realistic rendering (b) painterly rendering of (a),
opaque strokes

(c) painterly rendering of (a),
semitranparent strokes

(d) cartoon rendering of (a)
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Fig. 1. Each stylization affects gloss perception differently. In painterly rendering, opaque strokes (b) remove some highlights and semitransparent strokes
(c) blend colors, making shiny materials appear more diffuse. In contrast, cartoon rendering exaggerates shininess (d). In this article, we evaluate how people
perceive gloss in stylized images, and we derive the function that predicts for a given gloss how it will be perceived after stylization, as shown here in insets.

making the material appear more diffuse (Figure 1(c)). Cartoon
rendering quantizes colors and replaces smooth variations with
sharp boundaries, making the surface appear shinier Figure (1(d)).

In this article we present a series of quantitative perceptual
studies that examine how such artistic style parameters affect
gloss perception. We focus on painterly rendering and cartoon
rendering which have received great attention in the computer
graphics literature [Haeberli 1990; Meier 1996; Litwinowicz
1997; Hertzmann 1998; Hays and Essa 2004; Zeng et al. 2009;
DeCarlo and Santella 2002; Winnemöeller et al. 2006]. In industry,
numerous video games (Jet Set Radio, Zelda: The Wind Waker,
XIII) and movies (What Dreams May Come, Tarzan, Waking Life, A
Scanner Darkly) rely on painterly and cartoon styles similar to the
ones we study. While our results are not directly relevant to other
NPR algorithms, they are indicative of the types of effects that one
can observe in related styles such as watercolor [Curtis et al. 1997].

For painterly rendering we measure the effect of brush size, brush
opacity, and Hertzmann’s [2002] brush bump mapping which sim-
ulates texture due to brush bristles. Out of many parameters, these
three have the strongest impact on contrast and sharpness in the
image and are shared by most algorithms. For cartoon rendering we
consider the effect of quantization softness. While most cartoon ren-
dering algorithms perform a hard color quantization, a soft quanti-
zation produces more subtle stylizations [Winnemöeller et al. 2006].
Finally we compare the effect of these nonphotorealistic styles to the
effect of a simple Gaussian blur and show that while both painterly
rendering and blur remove details in the image, painterly rendering
offers a better preservation of gloss variations.

Our study yields a number of key insights on the perception of
gloss in cartoon and painterly images. First, we observe a com-
pression of the range of perceivable gloss as stylization increases.
We measure this compression and deduce the range of gloss that
can be depicted in each of the styles we study. In particular, we
find that painterly rendering cannot accurately depict shiny mate-
rials, especially when semitransparent brush strokes are used. In
contrast, cartoon rendering increases the perception of shininess for
diffuse materials. Our study also reveals counter-intuitive percep-
tual effects; although bump mapping introduces small-scale high-
lights over a painterly image, these additional variations reduce the
perceived shininess. Finally our study yields novel insights on the
perception of gloss in realistic renderings as we observe a corre-
lation between perceived contrast and sharpness for materials in

the mid-gloss range. This result differs from that of previous work
[Pellacini et al. 2000; Fleming et al. 2003] which suggests that these
two parameters are perceptually independent.

We leverage the low cost and scalability of crowdsourcing to
design and conduct the pilot study of our experiment. We then
replicate this study in a lab to validate our results. We discuss
the pros and cons of the two approaches. Although crowdsourcing
allows us to quickly identify general trends, the lab data reveal less
variance and a more accurate perception of contrast due to additional
control on the viewing conditions.

As an application of the data collected in our study, we estimate
the function that maps realistic gloss descriptions to their perceptual
values according to style parameters. This mapping predicts how
materials will be perceived when rendered in a given style. The
inverse mapping indicates which style best depicts a given material,
or how to exaggerate gloss to obtain a desired perception.

To summarize, this article makes the following contributions.

—We conduct the first evaluation of material perception in stylized
rendering.

—We compare the effect of brush size, brush opacity, brush bump
mapping, cartoon quantization, and blur.

—We measure how these different style parameters reduce the range
of perceivable gloss.

—We compute from our measurements the mapping that predicts
the perception of gloss in a painterly or cartoon image as a func-
tion of style parameters.

2. RELATED WORK

While guidelines on material depiction exist in art books [Cooke
1967; Johnson 1992; Ott and Kuseno 2005], these guidelines are
often very high level, such as “apply a white highlight to suggest
shininess.” We have not found lower-level instructions explaining
how to vary style parameters such as brush size of opacity to depict
material variations like gloss. Our study represents a first step in
this direction as we relate material perception in stylized images to
controlled BRDF and style parameters used in common rendering
engines. We design this study by taking inspiration from previous
work on the perception of materials in realistic images and on the
perception of shape and faces in stylized images.
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Material perception in realistic images. Pellacini et al.
[2000] conduct a study to estimate the dimensionality of gloss per-
ception. They use MultiDimensional Scaling (MDS) to derive a per-
ceptually uniform space expressed as a reparameterization of Ward’s
BRDF model [1992], with two parameters corresponding to the
contrast and sharpness of highlights. The goodness of fit of a confir-
matory MDS measures the independence of these two dimensions.
Wills et al. [2009] present a similar experiment to derive a perceptual
embedding of measured BRDFs. Complementary to these studies,
Nishida and Shinya [1998] and Vangorp et al. [2007] measured that
the accuracy of material perception is influenced by shape. Among
the shapes Vangorp et al. use, a blob was the most descriminative.

Fleming et al. [2003] show that the recognition of surface re-
flectance is improved when objects are illuminated under natural
environments. These results suggest that natural image statistics
such as color and derivative histograms provide strong cues for ma-
terial perception [Dror et al. 2001]. Ramanarayanan et al. [2007]
evaluate if transformations of the lighting environment such as blur-
ring and warping are perceivable given various geometries and ma-
terials. They observed that blurring the illumination is harder to
perceive for diffuse materials, and that warping is harder to per-
ceive for bumpy surfaces. They deduce from these observations a
visual equivalence metric between images. While the stylizations
studied in our article could be seen as forms of blurring or warping,
they occur on the final image, not on the reflected environment.

Kozlowski and Kautz [2007] and Křivánek et al. [2010] evaluate
how approximations of the rendering equation alter appearance for
various shapes and materials. Křivánek et al. deduce from their
study the range of parameters of the virtual point light algorithm
that produce renderings that are visually equivalent to reference
solutions. Kozlowski and Kautz conclude that approximations in
the rendering are less noticeable for complex geometry and diffuse
materials. In this article we vary material and style parameters and
leave the study of geometric variations for future work.

Perception in Nonphotorealistic Rendering. A standard ap-
proach to evaluate the effectiveness of NPR depictions is to measure
their performance on recognition tasks. Winnemöller et al. [2007]
evaluate different shape cues (shading, textures, contours, motion)
for shape recognition, and Cole et al. [2009] compare the ability of
several line drawing algorithms to depict shape. They conclude that
line drawings depict certain shapes almost as well as shaded images.
Xue et al. [2010] generate patterns that enhance the shape details
of an object and measure the effectiveness of different patterns in
a psychophysical experiment. Gooch et al. [2004] show that faces
depicted as illustrations or caricatures are faster to learn than pho-
tographs and equally recognizable. On the same topic, Wallraven
et al. [2007] study the impact of several styles on the recognition of
facial expressions. Among the different styles evaluated in the study
(painting, cartoon, illustration), painterly images result in the worst
recognition but the best preservation of facial expression intensity
for increasing brush sizes. Smith et al. [2010] derive the parameters
of a pen-and-ink algorithm from material parameters (tone, gloss,
texture). They validate their approach with a user study, but do not
evaluate how variations in the style parameters affect the perception
of materials. In this article we use a matching task to evaluate how
glossy materials are perceived under varying styles.

3. BACKGROUND ON GLOSS IN REALISTIC
IMAGES

Pellacini et al. [2000] have shown that the space of gloss is
two-dimensional. The first dimension, called contrast gloss c,
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Fig. 2. Set of target materials used in our study, here rendered without
stylization. Note that a larger set of materials is used for the match sliders.

corresponds to the perceived relative brightness of the diffuse and
specular components. The second dimension, called distinctness-
of-image gloss d, corresponds to the perceived sharpness of the
specular highlights. In the remainder of this article, we refer to c as
contrast and d as sharpness. We illustrate material variations along
the c and d dimensions in Figure 2.

Pellacini et al. [2000] define c and d with respect to the Ward
isotropic BRDF [Ward 1992] as

c = 3
√

ρs + ρd/2 − 3
√

ρd/2, (1)

d = 1 − α, (2)

where ρd , ρs , and α correspond respectively to the diffuse re-
flectance, the specular reflectance, and the surface roughness of
Ward’s model

f (θi, θo) = ρd

π
+ ρs

4πα2
√

cos θi cos θo

e
− tan2 θh

α2 , (3)

with θi and θo the incoming and outgoing radiance directions and
θh the angle between the surface normal and the half-vector. The
perceptual distance between two materials in gloss space is then

Dij =
√

[ci − cj ]2 + [1.78(di − dj )]2, (4)

where the scale factor 1.78 is required to make the space perceptu-
ally uniform. In this article, we express the gloss value of a material
as its perceptual distance to the most diffuse material of the space
of materials we study.

Pellacini et al. [2000] also introduce the notion of iso-gloss con-
tours that correspond to materials of the gloss space that are equidis-
tant to a reference material. According to their model, iso-gloss
materials are perceived as equivalent in gloss as compared to the
reference material: a material with high-contrast blurry highlights
will be perceived as equally glossy to a material with low-contrast
sharp highlights. Pellacini et al. support this prediction by an in-
formal ranking task, and our results confirm this finding. In addi-
tion, Pellacini et al. report that the c and d axes are independent,
that is, that perceived contrast is not a function of sharpness and
vice versa. The data collected by Fleming et al. [2003] support
this finding since they found no statistical dependence of contrast
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Realistic Opaque strokes Semi-transparent strokes Bump mapping Cartoon Blur

Fig. 3. Subset of the images used in the experiment. Notice the difference between the various stylizations on a diffuse object (top row, c = 0.046 and
d = 0.803) and a shiny object (bottom row, c = 0.170 and d = 0.956). In particular, painterly rendering makes the material appear more diffuse, while cartoon
increases shininess.

over perceived sharpness nor of sharpness over perceived contrast.
However, our findings differ from these previous observations as
we identify a correlation between the two dimensions for materials
in the mid-gloss range (Section 6.2).

Ferwerda et al. [2001] measured the Just-Noticeable Differences
(JND) for the two dimensions of the gloss space as �c = 0.031 and
�d = 0.017.

4. METHODOLOGY

Mechanical Turk study. Inspired by recent online perceptual
studies (e.g., Cole et al. [2009] and Heer and Bostock [2010]), we
used the crowdsourcing Web site Amazon Mechanical Turk to ac-
celerate the design of our study. The Mechanical Turk is an Internet
service on which workers are paid to perform small tasks for re-
questers. A task is often paid between $0.01 and $0.20, making
experiments like ours inexpensive to conduct. In addition, because
workers complete tasks in parallel, a large number of tasks can be
performed quickly. In our case, the experiments were performed in
a day or two, which allowed us to design the experiment iteratively.
As an example, in an early iteration of our experiment we used a
smaller range of values for our interface sliders and quickly discov-
ered that this leads to floor and ceiling effects in the results: many
subjects set the sharpness and contrast values to the extremes of
the sliders because they could not select higher or lower values that
may correspond to their perception. We describe the final design of
our experiment in Section 6.

Specifically, 15 to 30 different Mechanical Turk subjects per-
formed each of our tasks. Each subject can only perform a task once,
but nothing enforces the same subject to perform all the tasks of an
experiment. Subjects were paid $0.03 per task and had 3 minutes
to enter their settings, although they completed the task in 30 sec-
onds on average. We used a qualification test to explain to subjects
the concepts of painterly and cartoon rendering, and the notion of
sharpness and contrast for glossy materials. We provide the qual-
ification test as supplemental materials. The qualification test also
contained a simplified version of the task to familiarize subjects
with the space of gloss covered by the sliders of the interface.

Lab study. The downside of crowdsourcing in comparison to a
lab study is that experimenters have less control on how workers
perform the task. The calibration of the monitor and lighting condi-
tions, for example, are unknown and reflect the variety of viewing
conditions encountered on the Web. As a result, data obtained from
the Mechanical Turk can contain more variance than data obtained

from a lab study. However, this reduced control is compensated by
the larger quantity of data that we can collect. We provide an eval-
uation of the Mechanical Turk data by replicating the final design
of our experiment in a lab. The lab data show a good agreement
with the crowdsourcing data but reveal higher accuracy along the
contrast dimension.

For each style, three subjects participated in the study and we col-
lected 10 responses per task from each observer1. All subjects were
students (21–26 years of age), novice in computer graphics, and
unaware of the experimental hypotheses. They had normal visual
acuity and wore optical corrections during testing when needed.
Subjects were also instructed to complete the same qualification
test as the one we used on the Mechanical Turk.

5. HYPOTHESES

As shown in Figures 1 and 3 stylization modifies the contrast and
sharpness of highlights in an image and thereby alters the perception
of gloss. We expect the range of representable materials to differ as
we change the style parameters because each parameter affects the
appearance of highlights in different ways. Our study quantitatively
evaluates how these style parameters affect gloss perception. We
consider three style parameters for painterly rendering, that is, brush
size, brush opacity, and brush bump mapping and one parameter for
cartoon rendering, namely quantization. Most painterly and cartoon
rendering algorithms give access to these parameters which have the
strongest impact on sharpness and contrast. We also include a simple
image blur as an additional style for comparison.

Our hypotheses are as follows.
H1. In painterly rendering, brush strokes alter sharpness by either
eliminating or spreading sharp highlights. We expect shiny materials
to appear more diffuse in this style.
H2. Opaque strokes also introduce sharp edges in diffuse regions of
the image. Thus, we expect diffuse materials to appear shinier.
H3. Semitransparent strokes blend colors and reduce local contrast.
We expect this reduction of contrast to make shiny materials appear
more diffuse.
H4. Bump mapping introduces high-frequency details that may be
interpreted as specular highlights. We expect the increase in contrast
to make materials appear shinier.
H5. The quantization used in most cartoon shading sharpens the
image and we expect diffuse materials to appear shinier.

1An exception is the painterly style with opaque stokes, for which we had
five subjects and collected 15 responses.
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Fig. 4. Screen capture of the user interface. Subjects adjust the contrast
and sharpness of the highlights in the realistic image until they match the
contrast and sharpness in the painterly image.

H6. Blur reduces both contrast and sharpness in the image. We
expect blur to make objects to appear more diffuse.

6. EXPERIMENTAL DESIGN

In order to evaluate our hypothesis, we asked subjects to assess
gloss in stylized images using a single-interval matching task.

6.1 Task

We simultaneously present two images of different blobby shapes
(Figure 4) in each trial of our matching task. One image is styl-
ized (the “target”) and the other image is rendered in a realistic
manner (the “match”). We instruct subjects to adjust the contrast
and sharpness parameters of the BRDF in the realistic image until
it corresponds to the perceived material in the stylized image. We
use the method of adjustment [Baird and Noma 1978] instead of
a two-Alternative Forced Choice (2AFC) matching task because a
method of adjustment yields results using fewer trials and is better
suited to subjective tasks like ours. Fleming et al. [2003] use a simi-
lar matching task to evaluate the perception of gloss under different
illumination conditions.

Each image in our study represents an abstract blobby shape
under a realistic lighting environment. We follow the approach of
Vangorp et al. [2007] who show that people are more accurate in
matching materials between blobby shapes as it factors out the in-
fluence of familiar shapes. A different blob is used for the match
and target images, so that subjects cannot match images based on
shape. Natural environment lighting also improves material percep-
tion [Fleming et al. 2001; 2003] and we use the Grace environment
map for the experiment (http://www.debevec.org/Probes/).

For the online study, we displayed the task via a Web browser
using the Mechanical Turk interface. We assumed monitors to have
a gamma γ = 2.2, which is the setting of most displays. We imple-
mented a stand-alone version of the experiment for our lab study to
avoid cluttering the display with the frame of a Web browser. We
conducted the experiment using a desktop computer and a 19-inch
CRT display set to a resolution of 2048 × 1536. The background
screen was gray apart from the stimulus images and the response
controls. The observers’ head position was maintained using a chin
rest. Observers were positioned directly in front of the display screen
at a distance of 40cm, so that each pixel subtended approximately
1.7 × 1.7 arcmin. We gamma-corrected the display to linearize the

luminance function for each color channel (γ = 1.0). The room
was dark except for the light from the display screen.

Material variations. The space of gloss that we study covers
materials ranging from mirror-like to nearly diffuse. The sliders of
the user interface vary from 0.015 to 0.263 for c and from 0.769 to
0.99 for d, with step sizes equal to one Just-Noticeable Difference
(JND) �c and �d respectively. The sliders are initialized to random
values in these ranges.

Our stimulus set is made of a 4 × 4 regular sampling of this 2D
gloss space. The contrast c varies from 0.046 to 0.232 with a step
size equal to two JNDs �c. The sharpness d varies from 0.803 to
0.956 with a step size equal to three JNDs �d. We use a bigger
step size in the sharpness dimension to compensate for the fact that
�d < �c. Using a gray diffuse reflectance ρd = 0.2, this stimulus
set corresponds to Ward parameters ρs and α varying from 0.0328 to
0.2374 and 0.044 to 0.197 respectively. Figure 2 shows the resulting
set of materials. Note that the interface sliders cover values beyond
the {c, d} values of the stimuli to avoid floor and ceiling effects in
the experiment, as explained in Section 4.

We precomputed all the images to provide immediate visual feed-
back to the user. We used PBRT [Pharr and Humphreys 2004] to
render the images at a resolution of 400 × 300 pixels. We linearly
scaled the dynamic range so that the brightest highlight of the most
shiny material would map to 1. We then gamma-corrected the ren-
derings for display (γ = 1.0 in the lab, γ = 2.2 on the Mechanical
Turk). For the lab study we bilinearly scaled the images by a factor
of 1.2 to measure approximately 9.1 × 7.0cm on the screen and
subtend 13 × 10 degrees.

Style variations. For painterly rendering, we stylize each image
with three different brush sizes equal to {4 × 12, 8 × 24, 16 ×
48} pixels, which spans styles from detailed to very coarse on the
400 × 300 images in our stimulus set, as shown in Figures 5(d)–(f).
We use a variation of Haeberli’s algorithm [1990] to create the
painterly images because it is simple to implement and matches
our needs for the study of the effect of brush size on perception.
More advanced algorithms [Hertzmann 1998; Hays and Essa 2004]
do not maintain a uniform brush size over the image and make
use of stroke clipping and coarse-to-fine painting to preserve the
image information. Our goal in contrast is to evaluate material
perception when the image information is altered by the strokes.
Our implementation distributes brush strokes over the image using
stratified sampling, and orients the strokes along the image contours
based on a smoothed edge tangent flow [Kang et al. 2007]. We
sample colors in the image at the center of each brush stroke. For
semitransparent strokes the color is modulated by an opacity value
of 0.5. Finally, we use Hertzmann’s [2002] bump mapping technique
to mimic the texture of brush strokes and varnish. We use the same
set of stroke locations and orientations for every stimulus image.
The only variables are the brush parameters (size, opacity, bump
map) and material parameters.

For cartoon rendering, we apply Winnemöller et al.’s soft quan-
tization [2006] on the luminance channel of the realistic rendering
converted to CIE L*a*b* color space. A soft-quantized luminance
Lq is expressed as

Lq (x) = qnearest + �q

2
tanh(ϕq (L(x) − qnearest )), (5)

where L is the input luminance value, �q is the bin width (fixed
to 15 in our images), qnearest is the bin boundary closest to L(x),
and the scalar ϕq defines the sharpness of the transition between
two successive bins. A soft quantization produces less aliasing than
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(c) strong quantization(b) soft quantization(a) no stylization

(f) brush 16(e) brush 8(d) brush 4

Fig. 5. (b); (c) Effect of strong and soft quantization for the cartoon effect;
(d), (e), (f) effect of brush size in painterly rendering.

hard quantization and allows us to also evaluate the perception of
intermediate images, between purely realistic and purely cartoon
images. The cartoon images are computed with two different levels
of quantization: a strong quantization to create sharp edges, and a
softer quantization for a more subtle stylization. These quantizations
correspond to sharpness values ϕq equal to 0.3 and 0.6 respectively.
We illustrate the effect of soft and strong quantizations in Figure 5(b)
and (c). Finally, we compute the blurred images with Gaussian
kernels of standard deviations equal to {4, 8, 16}. Figure 3 shows a
subset of the stimulus images for each style.

In addition to the stylized images, we also show the subjects a
set of images rendered without stylization, so that we can relate
the effect of stylization to the perception of realistic images. Our
experiment contains 64 matching tasks for the painterly styles and
blur (4 × 4 materials, 3 brush or blur sizes, and 1 realistic setting)
and 48 matching tasks for the cartoon style (4×4 materials, 2 quan-
tization softness, and 1 realistic setting), for a total of 304 matching
tasks that we repeated 10 times in the lab study.

6.2 Results

We summarize all our data at the end of the article, and provide the
data of the individual subjects as supplemental material. In the ap-
pendix, Figure 11 summarizes the data collected in our Mechanical
Turk study and Figure 12 summarizes the data collected in our lab
study. Arrow plots and ellipse plots visualize the mean and standard
deviation of subjects’ settings, respectively. The origin of each ar-
row corresponds to the c, d position of a reference material in the
target set, and the endpoint corresponds to the mean of the subjects’
settings for that material. Ellipses depict the standard deviation of
subjects’ settings along the two main axes of the covariance matrix.
We assign a different color to each pair of arrow and ellipse to
differentiate each reference material. The origin of the frame corre-
sponds to the most diffuse material covered by the interface sliders
(c = 0.015 and d = 0.769), and dashed curves represent iso-gloss
contours with respect to this origin. From Eq. (4) we express the
gloss value of a material as the perceptual distance to the origin of
the material space.

g(c, d) =
√

[c − 0.015]2 + [1.78(d − 0.769)]2 (6)

We also show bar plots in Figures 11 and 12 that visualize the
projection of subjects’ settings along the gloss dimension. Bars cor-
respond to the mean and standard deviation of the gloss value of

subjects’ settings. A dashed line indicates the ideal settings (per-
ceived gloss = true gloss).

We first discuss the results obtained in the lab study since the
lab data contain less variance. We then discuss the similarities and
differences between the lab data and the Mechanical Turk data.

Perception of iso-gloss materials. While our study focuses
on the perception of gloss in stylized images, it also reveals valuable
information about realistic images. In the realistic case (Figure 12,
top left), distributions for mid-gloss materials are oriented along the
iso-gloss diagonal from high-contrast low-sharpness to low-contrast
high-sharpness. We further analyze this correlation between contrast
and sharpness at the end of this section. For low-contrast low-
sharpness materials, highlights are hard to perceive and subjects
tend to not distinguish different values of sharpness (horizontal
ellipses in the bottom left area of the space), while in the presence
of high sharpness there is only uncertainty about contrast (vertical
ellipses in the top right area of the space). In addition, arrows for
mid-gloss materials are aligned with the iso-gloss diagonal (top and
left of the space), indicating a tendency to favor median materials
over more extreme iso-gloss counterparts.

We visualize the projection of subject’s settings along the gloss
dimension as bar plots in Figure 12. We observe a slight overestima-
tion of gloss, although this deviation is in most cases smaller than
the standard deviation. The standard deviation of perceived gloss
in realistic images is equal to 0.036 on average, which corresponds
to approximately one JND of contrast �c or two JND of sharpness
�d (Ferwerda et al. [2001] do not provide the value of a JND in
the gloss dimension). Note, however, that the standard deviation
is higher for the low-contrast materials, for which subjects cannot
clearly distinguish highlights.

Painterly rendering with opaque strokes. The strongest ef-
fect of painterly rendering that we observe is a compression of
the range of perceivable materials as we increase brush size. The
compression is stronger along the sharpness dimension than along
the contrast dimension. A strong stylization (brush size 16) com-
presses the range of mean perceived gloss by a factor of 1.6, from
[0.07, 0.4] to [0.16, 0.37] so that diffuse materials appear shinier
while shiny materials appear more diffuse. We illustrate the range
of perceivable materials for each style in Figure 6.

The average standard deviation of perceived gloss increases
slightly with brush size, from a value of 0.045 for brush size 4
to 0.055 for brush size 16. Note also that as the space of perceived
material is compressed, the effective perceived distance between
two distinct materials reduces and eventually becomes smaller than
the standard deviation. The distinction between materials would
only be preserved if the standard deviation reduced at the same rate
as the space compresses.

Painterly rendering with semitransparent strokes. Subjects
perceive most materials as more diffuse under this style, so that
diffuse materials are better preserved than with opaque brush
strokes. The range of perceivable gloss reduces from [0.07, 0.4]
to [0.08, 0.28] with an average standard deviation of 0.06 at brush
size 16.

Painterly rendering with bump mapping. Bump mapping
introduces small details and highlights over the image. Our results
contradict our hypothesis and reveal that these variations make
shiny materials appear more diffuse, with a range of perceived
gloss compressed from [0.07, 0.4] to [0.11, 0.33] with brush size
16 (Figure 6). The standard deviation of perceived gloss remains on
average equal to 0.04.
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Gloss
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Opaque strokes

Semi-transparent strokes

Bump mapping

Cartoon

Blur
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Fig. 6. Range of mean perceived gloss for each style studied in our experi-
ment (brush size 16 or strong quantization). Dark lines indicate the lab data
while grey dashed lines indicate the Mechanical Turk data. Shiny materials
cannot be depicted with painterly rendering, while diffuse materials are not
well-preserved by cartoon rendering.

Cartoon quantization. Cartoon rendering makes diffuse ma-
terials appear shinier by increasing their sharpness (top left of the
space of materials). However, this effect does not occur for low-
contrast materials (bottom left of the graph), for which quantization
eliminates glossy highlights with very low contrast. In contrast with
painterly rendering, cartoon rendering doesn’t affect shiny materi-
als significantly and the overall range of perceived gloss is well-
preserved, equal to [0.09, 0.4]. The average standard deviation in
perceived gloss for strong quantization remains at 0.045.

Gaussian blur. We compare the previous measurements with
the effect of Gaussian blur to assess if painterly rendering is “just
a blur”. Our results confirm the intuition that blurring the image
makes materials appear more diffuse, and that this effect is more
dramatic than the one observed with painterly rendering. For a blur
kernel of standard deviation 16, all the materials are perceived in
a limited range of gloss equal to [0.065, 0.19] with an average
standard deviation equal to 0.04. In contrast, the various styles
of painterly rendering can depict materials in a range of gloss of
[0.08, 0.37] at brush size 16. This result shows that even if painterly
rendering significantly simplifies the image and removes details, it
does it in a different way than blur and offers a better depiction of
material variations.

Comparison with the Mechanical Turk. The data collected
on the Mechanical Turk agree with the general trends observed
with the lab data. In particular the Mechanical Turk data are accu-
rate enough to confirm our main observations on iso-gloss materials
(Figure 11, top left) and on the compression of the range of perceived
materials for each stylization (Figure 6). We observe, however, a
stronger compression along the contrast dimension in the Mechan-
ical Turk data. The standard deviation in perceived gloss is also
stronger on average, with a value of 0.05 instead of 0.034 for the
realistic case.

Summary and discussion. We have observed two forms of
deviations in the subjects’ settings: one along the iso-gloss contours,
and one across them.

The first deviation occurs along the iso-gloss contours where the
distributions of subjects’ settings are oriented along the diagonal
from high-contrast low-sharpness to low-contrast high-sharpness,
even for realistic images. The center of the distributions also tends
to move along the iso-gloss contours and away from the extreme

Table I. Correlation between Material Sharpness and Perceived
Contrast, for Each Reference Contrast in Our Dataset (top), and
Correlation between Material Contrast and Perceived Sharpness,

for Each Reference Sharpness (bottom)

Correlation between material sharpness and perceived contrast

Reference c 0.046 0.108 0.170 0.232

MTurk
correlation 0.37 0.41 0.47 0.35

p-value 0.0000 0.0000 0.0000 0.0000

Lab
correlation 0.06 0.30 0.25 0.11

p-value 0.11 0.0000 0.0000 0.003

Correlation between material contrast and perceived sharpness

Reference d 0.803 0.854 0.905 0.956

MTurk
correlation 0.39 0.54 0.58 0.42

p-value 0.0000 0.0000 0.0000 0.0000

Lab
correlation 0.05 0.30 0.32 0.11

p-value 0.17 0.0000 0.0000 0.0026

The correlation is significant for all the materials in the Mechanical Turk data but
is not significant for the low contrast and sharpness materials in the lab data. We
highlight significant correlations in bold (p-value < 0.01).

materials. This deviation could be due to the fact that when sub-
jects are uncertain, they prefer to avoid the interpretation that corre-
sponds to the ends of the scales in the matching experiment. Fleming
et al. [2003] report a similar bias in their experiment. We conclude
from these observations that for mid-gloss materials, subjects con-
found an increase in contrast and decrease in sharpness with an
increase in sharpness and decrease in contrast.

We performed an analysis of correlation to further evaluate the de-
pendence between contrast and sharpness. We report in Table I (top)
the correlation between material sharpness and the perceived con-
trast in realistic renderings, for each reference contrast in our dataset.
Table I (bottom) reports the correlation between material contrast
and perceived sharpness. In the Mechanical Turk data, we measure a
positive correlation that varies between 0.35 and 0.47 for perceived
contrast function of sharpness, and between 0.39 and 0.58 for per-
ceived sharpness function of contrast. The correlation is weaker in
the lab data but still statistically significant for the materials with
medium and high sharpness and contrast (p-value < 0.01), with a
correlation that varies between 0.11 and 0.32 for these materials.
This correlation differs from the observation in prior work that the
c and d parameters are perceptually independent. Further studies
are needed to understand the dimensions of gloss.

The second deviation that we observed occurs in the direction
normal to the iso-gloss contours and makes materials in stylized
images appear shinier or more diffuse, compressing the range of
perceivable materials. These results confirm our initial hypothesis
that stylization affects the perception of gloss. In particular, we mea-
sure a reduction of shininess in painterly rendering as large brush
strokes alter the small highlights that contribute to the appearance of
shininess [Berzhanskaya et al. 2002] (hypothesis H1). In addition,
semitransparent strokes blend colors between neighboring strokes,
which reduces local contrast and makes materials appear even more
diffuse (hypothesis H3). Opaque strokes make diffuse materials ap-
pear slightly shinier (hypothesis H2) but this effect is mitigated by
semitransparent strokes.

The data we have collected also confirm our hypothesis that
cartoon rendering makes materials appear shinier because of the
sharpening of diffuse color variations (hypothesis H5). However,
our data do not support our hypothesis that bump mapping would
increase shininess (hypothesis H4). We observe instead an opposite
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trend as bump mapping makes shiny materials appear as even more
diffuse than with the painterly style without bump textures. An
explanation for this perceptual effect is that, while subjects are
able to distinguish the bump map specularities from the object
specularities, the bristles texture masks the brush strokes’ edges
and alters the perception of sharp high-contrast color variations
over the object. Bump mapping can be seen as noise that corrupts
the high frequencies of the original signal.

Finally, the results of our blur experiment show that painterly
rendering with large brush strokes offers a better depiction of mate-
rials than blur. While blur averages the color values over the pixels,
painterly rendering selects a subset of these colors and preserves
more of the original contrast. In the context of image abstraction,
that simplifies image content by removing spurious details, our re-
sults suggest that painterly rendering is more effective than blur to
preserve material appearance through the simplification.

The data we collected on the Mechanical Turk suggest most of
the trends we observe in the lab data but contain a stronger compres-
sion along the contrast dimension for all stylizations. We explain
this increase in accuracy for perceived contrast in the lab by the
fact that the lab environment (calibrated monitor, dark room) offers
much more contrast than the one experienced by the Mechanical
Turk users on typical desktop and laptop computers. We also ob-
served more variance in the Mechanical Turk data than in the lab
data. However, although we have collected approximately the same
number of responses in both setups, the variance on each platform
can have different interpretations. Since the lab data of each style
contains the responses of 3 subjects with 10 repeats, the observed
variance may be mostly due to intra-subject variability. In contrast,
the Mechanical Turk data corresponds to the responses of 15 to
30 subjects without repeat, so the variance is more representative
of the inter-subject as well as viewing condition variability.

7. APPLICATIONS

7.1 Predicting Perception from Material and Style
Parameters

Our results show that different stylizations compress the space of
perceived materials in different ways. As an application of this
result, we estimate the function that maps the gloss space to the
compressed perceived space. This function predicts how a given
material will be perceived in a given style, and the inverse function
gives the material parameters required to obtain a target perception.

We use linear regression to fit a mapping function on the subjects’
settings. A linear model proved sufficient for a good fit of our
data. We fit a different function for each style (the three painterly
styles and the cartoon style) and each style parameter (brush size or
sharpness of quantization). Each function is expressed as

c′ = fc(c, d) = αc + βd + γ, (7)

d ′ = fd (c, d) = δc + εd + ζ, (8)

where {c, d} are the input material parameters, and {c′, d ′} the pre-
dicted perceived material. The inverse of this function predicts
which material {c, d} produces a desired perception {c′, d ′}, and
is expressed as

c = f −1
c (c′, d ′) = εc′ − βd ′ − εγ + βζ

δβ − αε
(9)

d = f −1
d (c′, d ′) = δc′ − αd ′ − δγ + αζ

δβ − αε
. (10)

We report the linear coefficients of our model computed from the
lab data for painterly rendering with opaque strokes in Table II. We

Table II. Mapping Coefficients for the Brush Sizes in our Dataset

α β γ δ ε ζ

No Brush 0.870 0.128 −0.097 0.069 0.892 0.094

Brush 4 0.807 0.318 −0.252 0.212 0.618 0.317

Brush 8 0.837 0.290 −0.230 0.235 0.494 0.424

Brush 16 0.722 0.285 −0.224 0.236 0.307 0.583

Opaque strokes.

Opaque strokes
brush 8
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brush 8

Bump mapping
brush 8
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Fig. 7. (First row) Mapping between the true and perceived materials.
(Second row) Visualization of the inverse mapping, indicating the material
parameters that are required to obtain a given material in gloss space. Note
that the inverse mapping can potentially point to materials that exceed the
physical limits of the BRDF model. This corresponds to materials that cannot
be effectively depicted in a stylized image.

provide the coefficients of the other styles computed from the lab
and Mechanical Turk data as supplemental materials. We interpolate
between these coefficients for brush sizes that are not in our dataset.
Figure 1 illustrates our prediction of perceived materials for various
styles. For this figure we used the data collected on the Mechanical
Turk that are more representative of the viewing conditions under
which this article is likely to be viewed.

The standard error of estimate of our model varies among styles
between 0.032 and 0.039 for c and d and reflects the variance
observed in the subjects’ settings. Our model gives a coefficient of
determination r2 that varies between 0.5 and 0.8 for c and d on
our lab data. The averaged L2 distance between the predictions of
our model and the corresponding mean subjects’ settings is equal to
0.01, which is much smaller than the standard deviation of subjects’
settings.

Figure 7 visualizes the mapping estimated from the lab data for
different styles, along with the corresponding inverse mapping. We
observe two main directions of deviation in the estimated mapping,
which reflects our earlier insights. A strong deviation occurs along
iso-gloss contours, and a second deviation compresses the range
of perceived materials across gloss values. Note that the inverse
mapping can potentially lead to material parameters that cannot be
represented with the BRDF model, indicating that these materials
cannot be depicted effectively in a stylized image. For large brush
strokes, the space of perceived materials collapses to a very small
area of the gloss space, making the inverse mapping close to ill-
posed especially along iso-gloss contours.

7.2 Enhancing Material Perception

Figures 8(a) and (b) show the realistic and painterly rendering of
two vases. The right vase is significantly more specular than the left
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(a) source realistic rendering (b) painterly rendering of (a) (c) prediction of the materials perceived in (b)

Fig. 8. Prediction of the materials perceived in a painterly rendering. The right vase appears more diffuse in the painterly image than in the source realistic
image.

one, yet the two materials are difficult to distinguish after stylization,
as predicted by our mapping (c). We use our inverse mapping to
estimate the material parameters that would produce the desired
perception. The two materials point to values outside the range of
materials that can be represented with the BRDF, so we clip the
values on the boundary of the space. We use these parameters to
exaggerate the contrast between the two materials so that the shiny
vase can be distinguished from the diffuse vase after stylization
(Figure 9(b)). Correcting material parameters according to style
improves the rendition of materials in the stylized image. We used
the Mechanical Turk data to generate these figures. This application
is similar in spirit to the work of Vangorp and Dutré [2008] who
correct material parameters to compensate for the influence of shape
on gloss perception.

We have conducted a pilot study in the lab to validate our material
exaggeration. We present subjects with a stylized image and two
realistic images and instruct them to “select the realistic image
that looks most like the stylized image.” We use two conditions to
generate the images. In the first condition, one of the realistic images
is used to generate the stylized image, while the second realistic
image corresponds to our prediction of the materials perceived in
the stylized image. We call this condition a “prediction.” In the
second condition we use the same two realistic images but we use
our exaggerated materials to create the stylized image, so that the
stylized image should look like the first realistic image. We call this
condition an “exaggeration.”

The images showed the same vase as in in Figure 1. We used 4
representative materials (low and high sharpness and contrast) and
the four styles (three painterly styles with brush 8 and 16 and a
cartoon style with strong quantization). Seven subjects participated
in the study, yielding 112 trials for each painterly style and 56 trials
for the cartoon style. Half of these trials correspond to the pre-
diction condition while the other half corresponds to exaggerations.
Table III reports the success rates for predictions and exaggerations,
where we consider a trial to be a success when subjects select our
prediction in the first condition and the original image in the exag-
geration condition. When pooled across all the styles, the success
rates and 5% significance p-values reveal that subjects only perform
slightly better than chance (43% of error) when asked to choose be-
tween the original material and our prediction, which suggests that
the two materials are plausible interpretations of the stylized im-
age. Our exaggeration is effective in helping users distinguish these
materials in 65% of the trials. When broken across styles, the suc-
cess rate of the exaggeration is only statistically significant for the
painterly styles with semitransparent strokes or bump mapping.

Table III. Success Rate of Our Prediction and Exaggeration

All Opaque Semi-transp. Bump Cartoon

prediction 0.43 0.45 0.43 0.46 0.36

p-value 0.037 0.252 0.175 0.344 0.09

exaggeration 0.65 0.59 0.79 0.64 0.54

p-value 0.0000 0.114 0.0000 0.022 0.425

When pooled across the 4 styles, the results of this study suggest that subjects hardly
make the distinction between the original material and our prediction (first row) and
that our exaggeration helps to disambiguate these two materials in 65% of the cases
(third row). We highlight values under the 5% significance level in bold (p-value <

0.05).

7.3 Compensating for Response Bias

As discussed in Section 6.2, the deviation along iso-gloss contours
suggests a response bias as subjects tend to avoid the end of the
scales when they are uncertain about the task. This bias results in
a nonnull mapping even for the realistic images. We propose to
compensate for this potential bias by subtracting the contribution of
the mapping fitted on the realistic settings from the other mappings.
Denoting {f 0

c , f 0
d } the mapping for the realistic case, we express

the compensated mapping {ĉ′, d̂ ′} as

ĉ′ = c + (fc(c, d) − f 0
c (c, d)) (11)

d̂ ′ = d + (fd (c, d) − f 0
d (c, d)). (12)

Figure 10 visualizes the compensated mapping fitted on the lab data
for every style. The compensation effectively removes the deviation
along the iso-gloss contours and helps distinguish the individual ef-
fect of each style. The overall compression appears stronger along
the sharpness dimension than along the contrast dimension. While
opaque strokes equally compress diffuse and shiny materials to-
ward the center of the space, semitransparent strokes and bump
mapping mainly make the shiny materials appear more diffuse.
In contrast, cartoon rendering increases shininess of high-contrast
low-sharpness materials but reduces shininess at low contrast.

8. DISCUSSION AND FUTURE WORK

Perception of textured objects, dynamic scenes and contex-
tual cues. Our work is in the line of previous studies on the per-
ception of materials in static images [Pellacini et al. 2000; Fleming
et al. 2003; Ramanarayanan et al. 2007; Vangorp et al. 2007].
Nonetheless, the study of material perception in dynamic scenes
represents an interesting direction for future research, especially for
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(d) realistic rendering(c) prediction of the materials(b) painterly rendering of (d)(a) realistic rendering
with exaggerated materialsperceived without exaggeration

Fig. 9. The inverse mapping exaggerates the materials in (a) to produce (d). The exaggeration adds contrast between the two materials to compensate for
the compression of the space of perceived materials. As a result, the exaggerated painterly rendering (b) looks closer to the target image (a) than to the one
perceived without exaggeration (c).
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Fig. 10. We subtract the contribution of the realistic settings to compensate
for the response bias along iso-gloss contours. The differences in compres-
sion induced by each style are more visible in these compensated mappings.

NPR styles where temporal coherence is a critical issue. Like previ-
ous work we also did not consider the effect of texture mapping on
the object. Texture patterns can be hard to decorrelate from lighting
reflections in a static image and studying the perception of these
combined effects represents another challenging research direction
for realistic and stylized rendering. Finally we chose to show the
object over a black background to avoid contextual influence.
However, most of our styles leave this background unaffected
which may give the impression that the stylization modifies the
object surface rather than the entire image. An additional study is
needed to assess if the presence of background helps subjects to
distinguish the effect of the stylization from the material variations.

Evaluating the influence of other styles. This article presents
the first evaluation of material perception in NPR and focuses on
painterly and cartoon styles. While our results do not directly ap-
ply to other styles, our experimental setup can be used to study
many other stylization techniques. Existing work points to several
guidelines regarding depiction of material such as the use of dark
and light bands to depict metallic surfaces in technical illustrations
[Gooch et al. 1998] or straight lines to depict glass in pen-and-ink
[Winkenbach and Salesin 1996]. None of these guidelines has been
evaluated formally and a better comprehension of their effects could
lead to more effective stylization algorithms. Since black and white
styles such as pen-and-ink and stippling use strokes to depict both
texture and tone, a first challenge would be to evaluate how people
distinguish tone from texture in these images.

Perception of gloss. Our results on realistic images reveal a
correlation between contrast and sharpness variations for materials
in the mid-gloss range. This observation differs from the percep-
tual independence of contrast and sharpness reported in previous
work [Pellacini et al. 2000; Fleming et al. 2003]. Further research
is needed to better understand how people perceive the various
dimensions of gloss in realistic and stylized images.

Improving painterly rendering. Our study shows that the
range of perceived materials is compressed as stylization increases.
An interesting future research direction is to design painterly ren-
dering algorithms that better convey materials. The material exag-
geration that we describe in Section 7 is a first step. We observed
that large brush strokes can remove small specular highlights and
make shiny materials appear more diffuse. A possible improvement
would be to impose that the brush strokes are located on the local
maxima and minima in the image to preserve these highlights.

Evaluation of crowdsourcing for perceptual studies. Our
work demonstrates that crowdsourcing is a viable solution to it-
eratively design perceptual studies. In addition to speed and low
cost, crowdsourcing gives us access to a large population working
under a variety of viewing conditions that are more representative
of the conditions under which images are viewed on the Web. This
variety also leads to additional variance in the data compared to the
results obtained in a lab under a controled environment. Additional
research in the spirit of Heer and Bostock [2010] is necessary to
understand the nature and magnitude of this variance. In particular,
we plan to investigate how one could estimate or control the viewing
conditions from a distance in order to improve the interpretation of
studies conducted via crowdsourcing.

9. CONCLUSION

In this article we used nonphotorealistic rendering algorithms to
study the perception of materials in stylized images. We have mea-
sured the compression of the range of gloss that can be depicted in
painterly and cartoon rendering and used these data to estimate the
function that maps a realistic gloss description to its perception in
a painterly or cartoon image. Our study also reveals novel insights
on gloss perception in realistic images as we have identified a de-
pendence between the contrast and sharpness of gloss. Finally we
describe the use of crowdsourcing to conduct our perceptual study.
We believe that crowdsourcing can greatly facilitate and accelerate
research similar to ours and we plan to investigate how to make
crowdsourcing more controllable for computer graphics studies.
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APPENDIX
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Fig. 11. Summary of the data collected in our Mechanical Turk experiment. Arrows point from each reference material in the target set to the mean of the
subjects’ settings for this material. Ellipses represent the covariance of subjects’ settings for each material. We use 16 different colors to distinguished the 16
target materials. The origin of the frame corresponds to the most diffuse material covered by the interface sliders (c = 0.015 and d = 0.769), and dashed
curves represent iso-gloss contours with respect to this origin. Bar plots visualize the mean and standard deviation of subjects’ settings projected along the
gloss dimension, and a dashed line indicates the ideal settings (perceived gloss = true gloss). We observe two forms of deviation in the subject settings. The
first deviation occurs along the iso-gloss contours and is even present in the realistic case. The second deviation occurs across the iso-gloss contours and
compresses the range of perceived gloss in stylized images. However, the amplitude and direction of this second deviation differ among styles.
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Fig. 12. Summary of the data collected in our lab experiment. Arrows point from each reference material in the target set to the mean of the subjects’ settings
for this material. Ellipses represent the covariance of subjects’ settings for each material. We use 16 different colors to distinguish the 16 target materials. The
origin of the frame corresponds to the most diffuse material covered by the interface sliders (c = 0.015 and d = 0.769), and dashed curves represent iso-gloss
contours with respect to this origin. Bar plots visualize the mean and standard deviation of subjects’ settings projected along the gloss dimension, and a dashed
line indicates the ideal settings (perceived gloss = true gloss). We observe in the lab data similar deviations as in the Mechanical Turk data. However, subjects
perform more accurate settings of contrast in the lab.
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